KEY TO FAMILIES MATURE NYMPHS OF THE MAYFLIES (EPHEMEROPTERA)
OF FLORIDA
[modified from Pescador and Richard (2004)]

1 Thorax with well developed mesonotal sield extended to abdominal segment VI; gills enclosed beneath shield (Fig. 2)... BAETISCIDAE...Baetisca

Fig. 2[from Pescador & Berner (1981)]

Thorax not as above; at least anterior abdominal gills exposed
... 2

2(1) Gills on abdominal segments II - VII forked and elongate-lanceolate, with margins fringed (Fig. 3); most with mandibular tusks projected forward and visible from above head (Fig. 4); if tusks absent, head and thorax with pads of long spines (Fig. 5)
... 3

Fig. 3 [from Burks (1953)]
Fig. 4 [from Edmunds, Jensen, & Berner (1976)]
Gills on abdominal segments II - VII variable, if gills forked and elongate-lanceolate, margins not fringed; mandibular tusks absent 6

3(2) Head and prothorax with dorsal pad of long spines on each side (Fig. 5); without mandibular tusks; gills ventral .. BEHNINGIIDAE—Dolania

Fig. 5 [from McCafferty (1975)]

Head and prothorax without pads of spines; mandibular tusks present; gills lateral or dorsal (Fig.6))

... 4

Fig. 6 [from Burks (1953)]
4(3) Mandibular tusks curved upward apically as viewed laterally (Fig. 7); ventral apex of hind tibiae projected into distinct acute point (Fig. 8) ...5

Mandibular tusks not curved upward apically as viewed laterally (Fig. 9); ventral apex of hind tibiae rounded (Fig. 10) ...POLYMITARCYIDAE

Fig. 7 [from Edmunds, Jensen & Berner (1976)]

Fig. 8 [from Edmunds, Jensen, & Berner (1976)]

Fig. 9 [from Unzicker & Carlson (1982)]

Fig. 10 [from Edmunds, Jensen & Berner (1976)]
5(4) Mandibular tusks broad and with row of spurs along lateral margins (Fig. 7B) terminal segment of labial palpi club shaped, broadly round (Fig. 7C) ... PALINGENIIDAE, Pentagena, P. vittigera (Walsh)

Mandibular tusks slender and without row of spurs along lateral margins (Fig. 7D); terminal segment of labial palpi truncate apically (Fig. 7E) EPHEMERIDAE
6(2) A double row of long setae on inner margins of femora and tibiae of forelegs (Fig. 11)

Fig. 11 [from Kondratieff & Voshell (1984)]

Long setae absent on forelegs, or not arranged as above
7(6) Gills ventral on abdominal segment I (Fig. 12); forecoxae without gills; foretarsi reduced and papilla-like (Fig. 12); meso- and metatarsal claws non-denticulate; abdominal sternum I with finger-like posteromedian process (Fig. 13)

OLIGONEURIIDAE (p. 98), Homoeoneuria, H. dolani Edmunds, Berner, and Traver

Fig. 12 [from Pescador & Peters (1980)]

Fig. 13 [from Pescador & Peters (1980)]

Gills dorsal on abdominal segment I; forecoxae with gills, either tufts (Fig. 14) or a single robust finger-like filament; meso- and metatarsal claws denticulate; abdominal sternum I without finger-like process

ISONYCHIIDAE, Isonychia

Fig. 14 [from Edmunds, Jensen, & Berner (1976)]
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8(6)</td>
<td>Gills on abdominal segment II operculate or semioperculate (Figs. 15, 16, 17) covering succeeding pairs of gills</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Gills on abdominal segment II neither operculate nor semioperculate, either similar to those on succeeding segments or absent</td>
<td>11</td>
</tr>
<tr>
<td>9(8)</td>
<td>Gills on abdominal segment II triangular, subtriangular, or oval, not meeting medially (fig. 15); margin of gill lamellae 3-6 simple or bilobed</td>
<td>LEPTOHYPHIDAE</td>
</tr>
</tbody>
</table>
10(9) Mesonotum with distinct anterolateral lobes (Fig. 16A); operculate gills fused medially (Fig. 16B); hind wingpads present NEOEPHEMERIDAE, Neoepemera

Mesonotum without anterolateral lobes (Fig. 17A); operculate gills not fused medially (Fig. 17B); hind wingpads absent ... CAENIDAE
11(8) Gills absent on abdominal segment II, rudimentary or absent on segment I, and present or absent on segment III; gills on segments III-VII or IV-VII consist of dorsal lamella and ventral lamella with numerous lobes (Fig. 18); paired tubercles often present on abdominal terga (Fig. 18) .. EPHEMERELLIDAE

![Figure 18](modified from Allen @ Edmunds (1965))

Gills present on abdominal segments I-V, I-VII, or II-VII; paired tubercles rarely present on abdominal terga .. 12

12(11) Body distinctly flattened; head flattened; eyes and antennae dorsal; mandibles not visible in dorsal view (Fig. 19) .. 13

![Figure 19](from Umzicker & Carlson (1982))
Body not flattened or if flattened, mandibles visible and forming part of flattened surface head .. 14

13(12) Claws as long as or longer than tarsi; tibiae and tarsi bowed (Fig. 20); maxillary palpi four-segmented (Fig. 21); abdominal gills with finger-like branch arising near middle (Fig. 22) .. PSEUDIRONIDAE, Pseudiron, P. centralis McDunnough

(Fig. 20 [from Berner & Pescador (1980)])

Fig. 21 [from Pescador (1985)]

Fig. 22 [from Pescador (1985)]

Claws much shorter than tarsi; tibiae and tarsi straight; maxillary palpi two-segmented (Fig. 23); abdominal gills variable, not as above HEPTAGENIIDAE

Fig. 23 [from Berner (1950)]

10
14(12) Claws of forelegs bifid (Fig. 24), claws of middle and hind legs long and slender, about as long tibiae .. METRETOPODIDAE, Siphloplecton

![Fig. 24](from Berner (1950))

Claws of all legs similar in structure, usually sharply pointed: claws variable in length, if those of middle and hind legs long and slender, then usually shorter tibiae 15

15(14) Abdominal gills on segments II-VII either forked (Fig. 25), in tufts (Fig. 26), or with double lamellae terminated in filaments or points (Fig. 27); maxillae with a dense brush of hairs on distal margin (Fig. 28) .. LEPTOPHLEBIIDAE

![Fig. 25](from Berner (1950))
![Fig. 26](from Berner (1950))
![Fig. 27](from Berner (1950))
![Fig. 28](from Needham, Traver & Hsu (1935))
Abdominal gills not as above; gills either more or less ovate (broad at base), obovate (narrowed at base); lamellae either single (Fig. 29), double (Fig. 30), or triple (Fig. 31); fringed on distal margin of maxillae variable, never with dense brush of hairs

.. BAETIDAE

Fig. 29 [from Berner (1950)]
Fig. 30 [from Berner (1950)]
Fig. 31 [from Spieth (1933)]
KEY TO GENERA FOR MATURE NYMPHS OF FLORIDA BAETIDAE
[adapted from Edmunds & Waltz (1996) and an unpublished key by N. Wiersema]

1. Median caudal filament highly reduced, 1/4 length of cerci or less (Fig. 31); femoral villopore present (distinct patch of simple setae on ventral surface of femora near its base) (Fig. 32) ... 9

Fig. 31 [modified from Berner & Pescador (1988)]

Fig. 32 [from Waltz & McCafferty (1987)]

Median caudal filament 1/2 length of cerci or greater (Fig. 33); femoral villopore present or absent ... 2

Fig. 33 [from Berner & Pescador (1988)]
2(1) Labial palp segment 3 simple and truncate (Figs. 34, 35); gills simple or with single recurved dorsal flap on some or all gills (Figs. 36, 37) ... 3

Labial palpi not as above (Figs. 38, 39); gills either simple (Fig. 40) or large with 1-3 ventral lamellae (Fig. 41) ... 5
3(2) Labrum with a deep triangular notch anteriorly (Fig. 42); claws longer than respective tarsi; labium with glossae broad, rounded, and shorter than paraglossae (Fig. 43); gills simple Pseudocentrotioides (p.); P. usa Waltz & McCafferty

![Fig. 42](image)

![Fig. 43](image)

Labrum not as above, with a small median notch anteriorly (Fig. 44); claws shorter than respective tarsi; labium with glossae slender, pointed, and subequal to paraglossae (Fig. 45); gills either simple or with recurved dorsal flap (Fig. 46) 4

![Fig. 44](image)

![Fig. 45](image)

![Fig. 46](image)

4(3) Mandibular incisors separated to the base or fused at half the length or less (Fig. 47);
segment 3 of maxillary palpi subequal in length to segment 2; lateral bristles of caudal filaments present on proximal three-fourths, apices of filaments without bristles; gills simple ... Centropilum (p.); C. triangulifer (McDunnough)

Fig. 47 [from Lowen & Flannagan (1991)]

Mandibular incisors rarely separated to the base, usually fused at half the length or more (Fig. 48); segment 3 of maxillary palpi, when present shorter than segment 2; lateral bristles of caudal filaments present to apices; gills either simple or with single dorsal flap at least on abdominal segment 1 (Fig. 50) .. Procloeon

Fig. 48 [from Wiersema (1999)]

Fig. 50 [from Berner (1950)]
5(2) Gills on abdominal segments I-VI with 1-3 ventral lamellae (Fig. 41); labial palpi narrow and elongate (Fig. 51); tarsal claws long and narrow with 2 rows of long teeth (Fig. 52); hind wingpads present .. \textit{Callibaetis} (p.)

Fig. 51 [from Spieth (1933)]

Fig. 52 [from Hofmann, Sartori, & Thomas (1999)]

Gills simple(Fig. 40); labial palpi not narrow and elongate (Figs. 56, 57, 59); tarsal claws short and broad with single row of teeth (Fig. 53); hind wingpads present or absent 6

Fig. 53 [from Wierema (2000)]
6(5) Maxillary palpi with subapical excavation (Fig. 54); antennal scape with digitate lobe (Fig. 55); labial palp segment 2 expanded medially (Fig. 56) *Pseudocloeon*

Fig. 54 [from McCafferty & Waltz (1995)]

Fig. 55 [from McCafferty & Waltz (1995)]

Fig. 56 [from Morihara & McCafferty (1979)]

Maxillary palpi without subapical excavation; antennal scape without digitate lobe; labial palp segment 2 not expanded medially as above ... 7

7(6) Labial palp segment 2 with thumb-like median lobe (Fig. 57); gills on abdominal segments VI-VII or VII slender and apically pointed (Fig. 58) *Acerpenna* (p.); *A. pygmaea* (Hagen)

Fig. 57 [from Berner & Pescador (1988)]

Fig. 58 [from Berner (1950)]
Labial palp segment 2 without thumb-like median lobe (Fig. 59); gills on abdominal segment VI-VII similar to those on preceding segments

8

Fig. 59 [from Morihara & McCafferty (1979)]

8(7) Femoral villopore present (Fig. 32); gills present on abdominal segments I-VII; ventral row of fine setae absent on incisors of both mandibles (Fig. 60); abdomen with distinct color pattern, caudal filaments with distinct dark band of segments at middle (Fig. 61)

.. Baetis (p.); B. intercalaris McDunnough

Fig. 60 [from Morihara & McCafferty (1979)]

Fig. 61 [from Morihara & McCafferty (1979)]
Femoral villipore absent; gills absent on abdominal segment I, present on segments II-VII; ventral row of fine setae present on incisors of both mandibles with very slender prosthica on right mandible (Fig. 62); abdominal color pattern distinct with segments I-IX dark and segment X light, caudal filaments without distinct dark band of segments at middle (Fig. 63) ... **Diphetor** (p.); *D. hageni* (Eaton)

![Fig. 62](from Morihara & McCafferty (1979)) ![Fig. 63](from Morihara & McCafferty (1979))

9(1) Cerci banded with alternate light and dark annulations (Fig. 64); labium compact with shortened palpi, apices of labial palpi reaching apices of paraglossae (Fig. 65); mandibular incisors short and apically cleft, right incisor without serrate inner margin (Fig. 66); minute hind wingpads present ... **Acentrella**

![Fig. 64](from Berner & Pescador (1988))

![Fig. 65](from Waltz & McCafferty (1987))![Fig. 66](from Wiersema (2000))
Cerci with distinct middle band of dark segments (Fig. 67); labium not compact, apices of labial palpi reaching beyond paraglossae (Fig. 68); mandibular incisors elongate, not cleft apically, with large serrations on inner margin of right incisors (Fig. 69); hind wingpads absent *Plauditus*.

Fig. 67 [modified from Berner & Pescador (1988)]

Fig. 68 [from Lugo-Ortiz & McCafferty (1998)]

Fig. 69 [from Wiersema (1999)]
KEY TO SPECIES FOR MATURE NYMPHS OF FLORIDA *PROCLOEON*
[modified from Berner & Pescador (1988)]

1. Lateral spines present on abdominal segments III/IV-X (Fig. 80) 2

Fig. 80 [from Wiesema (1999)]

Lateral spines present on abdominal segments VIII-X

... *P. rufostrigatum* (McDunnough)

2(1) Hind wingpads absent; abdominal gill 1 with a recurved dorsal flap (Fig. 81)

... *P. rubropictum* (McDunnough)

Fig. 81 [from Berner (1950)]

Hind wingpads present; abdominal gill 1 without recurved dorsal flap (Fig. 82)

... *P. viridoculare* (Berner)

Fig. 82 [from Berner (1950)]
KEY TO GENERA FOR MATURE NYMPHS OF FLORIDA CAENIDAE
[modified from Pescador and Richard (2004)]

1. Head with ocellar tubercles (Figs. 107, 108); maxillary and labial palpi two-segmented

 2

 Fig. 107 [from Soldan (1986)] Fig. 108 [from Soldan (1986)]

Head without ocellar tubercles (Fig. 109); maxillary and labial palpi three-segmented

 Caenis

Fig. 109 [from Edmunds, Jensen, & Berner (1976)]
2(1) Foretibiae with marginal row of hairs as long as tibiae (Fig. 111A); abdominal segment VI with projections strongly curved medially (Fig. 110); labrum with lateral margins moderately to strongly produced (Fig. 111B) *Cercobrachys, C. etowah* Soldán

![Diagram of abdominal segments and labrum]

Foretibiae with marginal row of hairs distinctly shorter than tibiae (Fig. 113A); abdominal segment VI with projection not strongly curved medially (Fig. 112); labrum trapezoidal or lateral margins nearly straight (Fig. 113B)

![Diagram of abdominal segments and labrum]
3(2) Operculate gills asymmetrical, with a protruding edge at posterolateral corner (Fig. X); segment 1 of labial palpi with patch of long setae on ventral surface (Fig. XX) *Brachycercus, B. bernerii* Soldan

Operculate gills generally symmetrical without protruding edge at posterolateral corner (Fig. Y); segment 1 of labial palpi without patch of setae on ventral surface (Fig. YY) *Sparburus*
KEY TO SPECIES FOR MATURE NYMPHS OF FLORIDA CAENIS
[modified from Pescador and Richard (2004)]

1. Posterior margin of abdominal sternum IX notched (Figs. 119, 120); dorsal surface of fore femora with transverse row of spatulate setae in apical 1/3 (Figs. 121, 122); abdominal terga IX-X without triads of black dots; abdominal sternum without black dots
 2

 Fig. 119 [from Provorsha (Provorsha (1990))]
 Fig. 120 [from Provorsha (Provorsha (1990))]
 Fig. 121 [from Provorsha (121)]
 Fig. 122 [from Provorsha (122)]

Posterior margin of abdominal sternum IX rounded (Fig. 123); dorsal surface of fore femora with scattered setae only (Fig. 124); abdominal terga IX-X usually with triads of black dots; abdominal sternum frequently with paired submedian dots
 3

 Fig. 123 [Provorsha (123)]
 Fig. 124 [from Provorsha (1990)]
2(1) Abdominal terga VII-IX uniformly brown; posteromedian projection of abdominal tergum II (Fig. 125a), narrowly triangular in dorsal view, at least twice as long as wide (Fig. 125b) C. macafferti Provonsha

Fig. 125 [from Provonsha (1990)]

Abdominal terga VII-IX pale medially with brown longitudinal stripes or blotches laterally; posteromedian projection of abdominal tergum II (Fig. 126a), broadly triangular in dorsal view, approximately as long as wide (Fig. 126b) C. hilaris (Say)

Fig. 126 (from Provonsha (1990))]
3(1) Lateral margins of pronotum strongly divergent (Fig. X); posteromedian projection of abdominal tergum II relatively long, almost vertically oriented (Fig. XX) C. eglinensis Pescador and Richard

Fig. X [modified from Pescador & Richard (2007)]

Fig. XX [modified from Pescador & Richard (2007)]

Lateral margins of pronotum subparallel or slightly pointed in dorsal view (Fig. Y); posteromedian projection of abdominal tergum II short and posterior directed (Fig. YY) 4

Fig. Y (modified from Provonsha (1990)]

Fig. YY [modified from Provonsha (1990)]
4(3) Hind tarsal claws with 9-11 denticles of nearly uniform size to progressively larger apically (Fig. 127) .. C. amica Hagen

Fig. 127 [from Provansha (1990)]

Hind tarsal claws with 16-20 denticles, basal 4-6 larger than the following apical denticles (Fig. 128) .. 5

Fig. 128 [from Provansha (1990)]
(4) Hind tarsi with 9-11 fimbriate spurs on ventral surface (Fig. 129); scape and pedicel of antennae usually brown \textit{C. diminuta} Walker

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure129}
\caption{Fig. 129 [from Provancha (1990)]}
\end{figure}

Hind tarsi with 6-8 fimbriate spurs on ventral surface; scape and pedicel of antennae pale \textit{C. punctata} Mcdunnough
KEY TO SPECIES FOR MATURE NYMPHS OF FLORIDA SPARBURUS [modified from Pescador and Richard (2004) & Sun and McCafferty (2008)]

1. Frontal ocellar tubercle long, 1.5 times longer than lateral tubercles and 2 times as long as eye width (Fig. 114) .. *Sparburus nasutus* Soldán

![Fig. 114](from Soldán (1986)]

Frontal ocellar tubercle short, almost as long as lateral tubercles and at most 1.5 times as long as eye (Fig. 115) .. 2

![Fig. 115](from Soldán (1986)]
2(1) Trailing edge of femora without dark subapical spot S. maculatus (Berner)

Trailing edge of femora with distinct dark subapical spot Sparburus n. sp.
KEY TO GENERA FOR MATURE NYMPHS OF FLORIDA EPHEMERELLIDAE
[modified from Pescador and Richard (2004)]

1. Lamellate gills present on abdominal terga III-VII (Fig. 130) 2

![Fig. 130] [from Berner (1950)]

Lamellate gills present on abdominal segments IV-VII (Fig. 131) 3

![Fig. 131] [from Berner (1950)]
3(1) Tarsal claws without denticles (Fig. 136); head, body, and appendages covered with long setae (Fig. 137) *Dannella, D. simplex* (McDunnough)

Fig. 138 [modified from Allen & Edmunds (1962)]

Fig. 139 [from Allen & Edmunds (1962)]

Tarsal claws with denticles (Fig. 138); head, body, and appendages not covered with long setae ... 4

Fig. 138 [from Allen & Edmunds (1963)]
KEY TO SPECIES FOR MATURE NYMPHS OF FLORIDA *EPHEMERELLA*
[modified from Allen (1966)]

1. Posterior margins of abdominal terga without paired tubercles (Fig. 142A), minute paired protuberances may be present on posterior margins of some abdominal terga approximately basal half of tarsi brown, remainder of segment yellowish (Fig. 142B)

 ... *E. excrucians* Walsh

Fig. 142A [from Allen (1965)]
Fig. 142 B

Posterior margins of abdominal terga III-VIII with paired submedian tubercles (Fig. 143A), barely discernible on terga III and terga VIII; tarsi yellowish with broad submedian brown band (Fig. 143B)

 ... *E. invaria* (Walker)

Fig. 143A [from Allen (1965)]
Fig. 143B
KEY TO MATURE NYMPHS OF FLORIDA EPHEMERIDAE
[modified from Berner and Pescador (1988)]

1. Frontal process of head distinctly bifid (Fig. 146); mandibular tusks with small group of basal and lateral spurs (Fig. 147); foretibiae not emarginate apically and not greatly flattened (Fig. 148) Ephemerella (p.); E. simulans Walker

Fig. 147 [from Edmunds, Jensen, & Berner (1976)]

Fig. 148 [from Berner & Pescador (1988)]

Frontal process of head entire (Fig. 149); mandibular tusks without spurs but with long hairs (Fig. 150); foretibiae slightly to distinctly emarginate along distal margin (Fig. 151)

... Hexagenia (p.)

Fig. 149 [from Burks (1953)]

Fig. 150 [from Edmunds, Jensen, & Berner (1976)]

Fig. 151 [from Berner & Pescador (1988)]
<table>
<thead>
<tr>
<th>Table II. SPECIES CHECKLIST OF THE MAYFLY FAUNA OF FLORIDA: An Update (post Pescador & Richard 2004)¹</th>
</tr>
</thead>
</table>

BAETIDAE
- Acentrella alachua (Berner)
- Acentrella parvula (McDunnough)
- Acerpena pygmaea (Hagen)
- Baetis intercalaris McDunnough
- Callibaetis floridanus Banks
- Callibaetis pretiosus Banks
- Centroptilum triangulifer (McDunnough)
- Diphetor hageni (Eaton)
- Plauditius bimaculatus (Berner)
- Plauditius punctiventris (McDunnough)
- Procloeon rubropictum (McDunnough),
 (=Procloeon hobbsi (Berner)*)
- Procloeon viridoculare (Berner)
- Pseudocentropiloides usa Waltz & McCafferty
- Pseudocloeon ephippiatum (Traver)
- Pseudocloeon frondale (McDunnough)
- Pseudocloeon propinquum (Walsh)

BAETISCIDAE
- Baetisca becki Schneider & Berner
- Baetisca escambiensis Berner
- Baetisca gibbera Berner
- Baetisca laurentina McDunnough ??
- Baetisca obesa (Say)
- Baetisca rogersi Berner

BEHNINGIIDAE
- Dolania americana Edmunds & Traver

CAENIDAE
- Brachycercus bernerii Soldan
- Caenis amica Hagen
- Caenis diminuta diminuta Walker
- Caenis eglinensis Pescador & Richard**
- Caenis hilaris (Say)
- Caenis macafferti Provonscha
- Caenis punctata McDunnough
- Cercobrachys etowah Soldan
Sparbarus maculatus (Berner)
 (=Brachycercus maculatus (Berner)***
Sparbarus nasutus (Soldan)
 (=Brachycercus nasutus Soldan)***

EPHEMERELLIDAE
Attenella attenuata (McDunnough)
Dannella simplex (McDunnough)
Ephemarella excrucians Walsh
Ephemarella invaria (Walker)
Eurylophella doris (Traver)
Teloganopsis deficiens (Morgan)
 (= Serratella deficiens (Morgan)***

EPHEMERIDAE
Ephemera simulans Walker
Hexagenia bilineata (Say)
Hexagenia limbata (Serville)
Hexagenia orlando Traver

HEPTAGENIIDAE
Heptagenia flavescens (Walsh)
Maccaffertium exiguum (Traver)
Maccaffertium mexicanum integrum (McDunnough)
Maccaffertium smithae (Traver)
Macdunnoa brunnea Flowers
Stenacron floridense (Lewis)
Stenacron interpunctatum (Say)

ISONYCHIIDAE
Isonychia arida (Say)
Isonychia bernerii Kondratieff & Voshell
Isonychia sayi Burks
Isonychia sicca (Walsh)

LEPTOHYPHIDAE
Astiplax dolani (Allen)
Tricorythodes albilineatus Berner

LEPTOPHLEBIIDAE
Choroterpes basalis (Banks)
Habrophlebia vibrans Needham
Habrophlebiodes bruneipennis Berner
Leptophlebia bradleyi Needham
Leptophilea cupida (Say)
Leptophilea intermedia (Traver)
Paraleptophilea volitans (McDunnough)

METRETOPODIDAE
Siphloplecton brunneum Berner
Siphloplecton fuscum Berner
Siphloplecton simile Berner
Siphloplecton speciosum Traver

NEOEPMERIDAE
Neoephemera compressa Berner
Neoephemera youngi Berner

OLIGONEURIDAE
Homeoneuria dolani Edmunds, Berner & Traver

PALINGENIIDA
Pentagenia vittigera (Walsh)**

POLYMORCYTHIDAE
Ephoron sp
Tortopus puella (Pictet)

PSEUDIRONIDAE
Pseudiron centralis McDunnough

*recent synonymy
**recently described species, new state record
***new combination
****previously in Ephemeridae
??occurrence in Florida is doubtful

1Prepared by M.L. Pescador and A.K. Rasmussen
MAYFLY IDENTIFICATION EXERCISE
(EPT Workshop 2009)

Instructions: There are approximately 50 species of mayflies that are provided for you to identify. Due to time constraints, we do not expect you to identify them all in half a day. However, do the best you can, and at least by the end of the day you are expected to at least **20 species** that you have identified. For the Baetidae and Caenidae we do not expect you to identify them to species just to the genera. These two families are relatively small and fragile, and require slide mounts to accurately observe the taxonomic characters under a compound microscope to identify them to species. However, several slide mounts of key characters for a good number of representative species of these families are available as “demo” for you to examine.

The vials are numbered (numbers are inside the vials), and mostly two vials are provided per taxon. Numbering of slide mounts correspond to those vials containing the specimens where the structures where dissected.

Note: Most of the nymphs are fragile, be very careful in handling them so the next person using them will still be able to identify the specimens.

NAME:

<table>
<thead>
<tr>
<th>Vial #</th>
<th>Taxa (genera/species)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>